Corpus-based instruction interpretation in virtual environments

Luciana Benotti, Martín Villalba, Tessa Lau & Julián Cerruti

Instruction interpretation?

Aren't all (non-trivial, computational) systems supposed to do that already?

Indeed! When we say

Instruction interpretation

we'll use it as a placeholder for

Interpretation of **task-oriented** instructions written in **natural language** by users and without any kind of special syntax

What is a virtual environment?

Environment

The surroundings which determine, specify or clarify the meaning of an event

(according to Wiktionary)

Formally, an environment is defined by:

Its **actions** (no actions = no events)

Actions implies **reactions** to them. This makes our environment interactive

Actions and reactions occur within a **circumstance**, a combination of where and at which time an action took place

Virtual Environment

The *virtual* surroundings which determine, specify or clarify the meaning of a *virtual* event

Formally, a *virtual* environment is defined by:

Its **actions** (no actions = no events)

Actions implies **reactions** to them. This makes our *virtual* environment interactive

Actions and reactions occur within a **circumstance**, a combination of where and at which time an action took place

These are virtual environments:

...but so are these

Word of the day: Affordability

An action that can take place in the current environment given the current circumstances

So you'll be interpreting instructions* inside a virtual environment.

But why is it **corpus-based**?

* interpreting task-oriented instructions written in natural language by users and without any kind of special syntax

Let's talk about the most common approaches to instruction interpretation

Symbolic approaches

Walk through the door and turn right

Symbolic approaches

Symbolic approaches

Stop before reaching the button next to the lamp, and push it

Give it to him

Shut up and answer me

Grab the mouse

St	atisti	cal Go(app ogle	roach	Ies
	how do i				
	how do i put this gentl how do i love thee how do i get a passpo how do i renew my pa s	y rt ssport			
		Google Search	I'm Feeling Lucky		

They require **extensive manual annotation** of a **corpus** during the training phase

Our approach

Corpus based (like statistical approaches)

Fully automated annotation (like symbolic approaches)

Error tolerant (orthography, grammar, etc)

Schedule for this talk: Three parts

- 1) Foundations What is our work based on?
- 2) Approach What we did, and how we did it?

3) Results Did it work?

What is the

GIVE 3D Client

Move forward 2 steps, and then press the blue button.

Corpus statistics

6 virtual worlds 100 games 5580 instructions 14:26hs. of interaction

Divided in two major branches

In the **Cs Corpus**, instructions were always given by the same person

Pros: consistent instructions and language

Cons: familiarity with the task may skew results, favoring efficiency over naturalness

In the **Cm Corpus**, both roles were selected randomly

Pros: instructions are truly spontaneous, easier to collect**Cons**: too much variability in the training set, instructions are inconsistent, swearing

perss the red - r - no into shade room the paise
 stop spinning - door on your left - sorry
 Through the opening to the right of the lamp

Question:

How do we deal with continuous* data?

* not really continuous
 but close enough

Answer:

We don't. We discretize them using a planner

An automated planner is a system that, given

returns a sequence of actions that achieve a certain target state.

This sequence of actions is called the **solution** to a planning problem

Discretization

Step 1: Define a set of conditions, operators and states common for both the environment and the planner

- [button b1...b7, door d1..d5]
- [walk_through(door d)
- push_button(button b)]
 [initial_pos = p0]

Discretization

Step 2: Segment the user data, using planner events as boundaries

Discretization

Step 3: create a plan for each segment. Together, they form the discrete version of this interaction

```
Plan S1:
walk thro
```

walk_through(door d1)
Plan S2:

walk_through(door d3)
Plan S3:

walk_through(door d4)
Plan S4:

push_button(button b2)

Part 2

Searching for Solutions

Our architecture

Our architecture

We'll pick the correct interpretation from our set of clusters

What is a correct interpretation?

Automated annotation

Press the red button in the furthest room [enters the room] [presses the red button] [turns right] Nowgo right, green next to lamp in next room [enters to the room to the right] [presses the green button]

Behavior-based annotation

Press the red button in the furthest room

[enters the room] [presses the red button] [turns right]

Nowgo right, green next to lamp in next room

[enters to the room to the right] [presses the green button]

Visibility-based annotation

Press the red button in the furthest room [enters the room] [presses the red button] [turns right]

Nowgo right, green next to lamp in next room [enters to the room to the right]

[presses the green button]

Clearly, the method is not perfect

Press the green button [steps next to the wrong button]

No

[moves towards the correct one] [presses the right one] Now that we have **canonical reactions**, we can classify instructions:

If two instructions have **the same reaction** in **the same location**, they belong to the same **group** or **cluster**

Graphically, it looks like this

- Red left of chair Press the one behind u
- Press middle button In group of 3, press middle one Counting right, 2nd one
- To the room with lamp Go back to the big room Go back to the hallway Go back out the room Down the passage Go back out Yes

Out the way you came in Exit the way you entered

Go through the opening on the left with the yellow wall paper

What if I get a shorter response? Should that count as a valid reaction?

(c) Briberry @ FLickr

If we are **goal oriented**, then a shorter reaction shouldn't count as right

Instruction:

- Go to your room
 Clean your desk
- 3. Make your homework
 - Reaction:

Goes to room

However, if we are **process oriented**, then the player is now closer to the goal, and we accept it

Our architecture (part 2)

Algorithms

SimilarityindexesJaccardOverlap $|A \cap B|$ $|A \cap B|$ $|A \cup B|$ min(|A|,|B|)

Distance indexes

Levenshtein (over letters and words)

Example: Country \rightarrow City: 4 (Country \rightarrow Ciuntry \rightarrow Cintry \rightarrow Citry \rightarrow City)

Other strategies

BLEU

Evaluation algorithm for machine-translated text quality

Idea: we'll assume every cluster is a set of possible translations of the utterance, and choose the one with the highest average score

Other strategies

Support Vector Machines Linear binary classification

Features: unigram count and player location. A new classifier is trained for each evaluation (keeps the feature number low).

Other strategies

Majority Pick the largest available cluster

Random Pick one at random

Note on random: this is not the *true* random – the baseline is *very* tricky to calculate

What if we could correct mistakes?

If the prediction is **incorrect**, we can also allow the system to try again

(no more than 3 times)

Part 3

1

General results

70% accuracy for the best performing algorithm (and no error corrections)

Chen & Mooney (2011) achieved 56% Gorniak (2007) achieved 72% using manual annotation

Human accuracy is closer to 69% (according to Chen & Mooney)

Question:

¿Which one was the **best** algorithm?

General results

Similarity indexes (**Jaccard** and **Overlap**) achieved the best results at first

BLEU and Levenshtein (by words) achieved a decent performance

SVM had to be carefully tuned, and it eventually outperformed the rest (in Vis clustering)

Levenshtein (by letters) is not better than random

Question:

Which classification strategy is better, visibility or behavior? Algorithm vs Reaction clustering Corpus H1-Hn

Answer: if we accept shorter results as correct, there is no (statistically significant) difference

However, if we only accept a perfect matching, then **Visibility** is better

Question:

Is it relevant whether the instructions came from the **same person** or not?

Accuracy comparative between clustering strategies

Answer: the Cs data got better results in all tests

Question:

How much better are the results when we allow **mistake corrections**?

Corective clustering, cs corpus

Answer: A **good** algorithm rarely needs more than two retries.

A **bad** algorithm improves linearly.

Impact of error correction Visibility clustering, Cs corpus

Question:

Are this results the same in a different language?

Answer: predictably, results appear to be consistent

In short: Three ideas

- Corpus data from the Give Challenge
- Continuous actions are discretized using a planner
 - Utterances are clustered according to their (discrete) reaction and Bhv/Vis approach
- For a new utterance, we chose the correct affordability through cluster similarity
- We also test the impact of corrections on accuracy
- 70% accuracy without retrying, 92% with one retry
- Best strategy: Single-speaker corpus, Visibility clustering, SVM prediction
 - Language independent

Approach

Results

Foundations

Now is up to you: QUESTIONS?

Thank you for your attention

Tessa Lau tessa.lau@gmail.com Luciana Benotti luciana.benotti@gmail.com

Julián Cerruti jcerruti@gmail.com

Martín Villalba mvillalb@uni-potsdam.de

Further reading:

• **Benotti, Villalba, Lau and Cerruti** - Corpus-based interpretation of instructions in virtual environments. *50th annual meeting of the ACL (2012)*

• **Benotti and Denis** - CL system: Giving instructions by corpus based selection. *13th European Workshop on NLG (ACL, 2011)*